Анонимно
Прямая a касается описанной около треугольника ABC окружности в точке A, отрезок
AD - биссектриса этого треугольника. Докажите, что односторонние углы, образованные при
пересечении прямых a и BC секущей AD , равны.
Ответ
Анонимно
∠CDA = ∠DAB + ∠CBA;
∠DAB = ∠DAC;
∠CBA = ∠CAa (между касательной a и секущей CA); оба эти угла "измеряются" половиной дуги AC. ∠CBA - вписанный угол, опирающийся на эту дугу, а про второй угол я уже всё сказал :).
∠DAa = ∠DAC + ∠CAa;
Всё доказано. ∠CDA = ∠DAa;
∠DAB = ∠DAC;
∠CBA = ∠CAa (между касательной a и секущей CA); оба эти угла "измеряются" половиной дуги AC. ∠CBA - вписанный угол, опирающийся на эту дугу, а про второй угол я уже всё сказал :).
∠DAa = ∠DAC + ∠CAa;
Всё доказано. ∠CDA = ∠DAa;
Новые вопросы по Геометрии
5 - 9 классы
7 минут назад
5 - 9 классы
11 минут назад
Студенческий
16 минут назад
10 - 11 классы
18 минут назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад