Анонимно

Дан треугольник ABC, на стороне AC которого взята точка D такая, что AD=7 см, а DC=14 см. Отрезок DB делит треугольник ABC на два треугольника. При этом площадь треугольника ABC составляет 105 см2.

Найди площадь большего из образовавшихся треугольников, ответ дай в квадратных сантиметрах.​

Ответ

Анонимно

Дан ΔABC, на стороне AC которого взята точка D такая, что AD=7 см, а DC=14 см. Отрезок DB делит ΔABC на два треугольника. При этом площадь Δ ABC составляет 105 см².  Найди площадь большего из образовавшихся треугольников, ответ дай в см²

Объяснение:

Сторона АС=7+14=21 (см).

У большего из треугольников , основание должно быть большее, тк высоты одинаковые для всех треугольников. Это ΔBDC.

[tex]\frac{S(ABC)}{S(BDC} =\frac{0,5*h*AC}{0,5*h*DC}[/tex]  , [tex]\frac{105}{S(BDC)} =\frac{21}{14}[/tex] ,

S(BDC)=(105*14):21=70 (см²).