Анонимно
№4. В ящике 3 белых и 4 черных шара. Из ящика берут сразу 3 шара. Найдите вероятность того, что 2 из них будут черными, а 1 — белым (событие А).
Ответ
Анонимно
Ответ: p=18/35.
Объяснение:
1 способ.
Назовём чёрный шар "шаром с признаком". Всего шаров в урне N=7, из них "шаров с признаком" M=4. Тогда вопрос ставится так: найти вероятность p того, что в выборке из n=3 шаров m=2 шара будут "с признаком". Искомая вероятность p вычисляется по формуле: p=C(M, m)*C( N-M, n-m)/C(N,n), где C(n,k) - число сочетаний из n по k. В нашем случае p=C(4,2)*C(3,1)/C(7,3)=18/35.
2 способ.
Взять 2 чёрных и 1 белый шар возможно следующими способами:
1) ч ч б - событие А1
2) ч б ч - событие А2
3) б ч ч - событие А3
Тогда A=A1+A2+A3, и так как события A1, A2 и A3 несовместны, то p(A)=p(A1)+p(A2)+p(A3). Найдём p(A1), p(A2) и p(A3):
p(A1)=4/7*3/6*3/5=6/35;
p(A2)=4/7*3/6*3/5=6/35;
p(A3)=3/7*4/6*3/5=6/35.
Отсюда p(A)=18/35.
Новые вопросы по Алгебре
5 - 9 классы
47 секунд назад
5 - 9 классы
59 секунд назад
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад