Анонимно
Решите логарифмическое уравнение:
lg(5+x)-lg(1-x)=lg2
Ответ
Анонимно
lg(5+x)-lg(1-x)=lg2
ОДЗ:
[tex] \left \{ {{5+x\ \textgreater \ 0} \atop {1-x\ \textgreater \ 0}} \right. , \left \{ {{x\ \textgreater \ -5} \atop {x\ \textless \ 1}} \right. [/tex]
x∈(-5;1)
lg(5+x)=lg2+lg(1-x)
lg(5+x)=lg(2*(1-x))
lg(5+x)=lg(2-2x)
5+x=2-2x
3x=-3
x=-1, -1∈(-5;1) =>
ответ: x=-1
ОДЗ:
[tex] \left \{ {{5+x\ \textgreater \ 0} \atop {1-x\ \textgreater \ 0}} \right. , \left \{ {{x\ \textgreater \ -5} \atop {x\ \textless \ 1}} \right. [/tex]
x∈(-5;1)
lg(5+x)=lg2+lg(1-x)
lg(5+x)=lg(2*(1-x))
lg(5+x)=lg(2-2x)
5+x=2-2x
3x=-3
x=-1, -1∈(-5;1) =>
ответ: x=-1
Новые вопросы по Алгебре
5 - 9 классы
44 секунды назад
5 - 9 классы
46 секунд назад
5 - 9 классы
55 секунд назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад