Анонимно
10 часов назад

заданы уравнения движения точки x=at y=at(1+bt) где at=3м/с bt=1/12 c^-1 найдите модуль вектора в момент времени t=2

Ответ

Анонимно
Скорость - это первая производная функции пути по времени.
Найдем выражение для скорости по каждой координате, а затем определим модуль вектора скорости.
[tex]v_x=\dot{S_x}=(at)'=a; \\ v_y=\dot{S_y}=(at+abt^2)'=a+2abt=a(1+2bt); [/tex]
Подставляя значения a=3, b=1/12, t=2 получаем
[tex]v_x=3; \ v_y=3(1+ 2*2*\frac{1}{12})=3+1=4; \\ v= \sqrt{v_x^2+v_y^2}= \sqrt{3^2+4^2}=5 (_M/c) [/tex]