Анонимно
РЕШИТЕ ПОЖАЛУЙСТА ОЧЕНЬ НАДО!!!!!90б
Прямая касается двух окружностей с центрами О и Р в точках А и В соответственно. Через точку С, в которой эти окружности касаются друг друга, проведена их общая касательная, пересекающая прямую АВ в точке М. Найдите РМ, если АВ=8 и угол СОМ=[tex] \alpha [/tex]
Ответ
Анонимно
1. MC=BM и МА = МС (св-ство касательных,проведенных из 1 точки.)
=> МС = АВ/2.
2. МО - биссектриса СМА (угол). РМ - биссектриса ВМС (угол)
Сумма этих углов = 180°. Получается что сумма углов CMO и РМС равна 90 градусов. То есть треугольник РМО - прямоугольный.
3. МС - высота (к гипотенузе) и угол РМС = угол СОМ = а.
Дальше cos.
РМ = МС/cos(а) = AB/(2*cos(a))
Всё так :)
=> МС = АВ/2.
2. МО - биссектриса СМА (угол). РМ - биссектриса ВМС (угол)
Сумма этих углов = 180°. Получается что сумма углов CMO и РМС равна 90 градусов. То есть треугольник РМО - прямоугольный.
3. МС - высота (к гипотенузе) и угол РМС = угол СОМ = а.
Дальше cos.
РМ = МС/cos(а) = AB/(2*cos(a))
Всё так :)
Ответ
Анонимно
Если
из какой-нибудь точки провести две касательные к окружности, то их отрезки от
данной точки до точек касания равны между собой и центр окружности находится на
биссектрисе угла, образованного этими касательными.
ВМ = МС и МА = МС ⇒МС = АВ/2
РМ - биссектриса < ВМС
МО - биссектриса < СМА
< ВМС +< СМА=180⇒< РМС +< СМО = 90 ⇒ΔРМО - прямоугольный
МС - высота к гипотенузе AB
< РМС = < СОМ = а
РМ = МС/cos(а) = AB/2cosα
ВМ = МС и МА = МС ⇒МС = АВ/2
РМ - биссектриса < ВМС
МО - биссектриса < СМА
< ВМС +< СМА=180⇒< РМС +< СМО = 90 ⇒ΔРМО - прямоугольный
МС - высота к гипотенузе AB
< РМС = < СОМ = а
РМ = МС/cos(а) = AB/2cosα
Новые вопросы по Геометрии
5 - 9 классы
3 минуты назад
5 - 9 классы
4 минуты назад
5 - 9 классы
4 минуты назад
5 - 9 классы
4 минуты назад
10 - 11 классы
8 минут назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад