Анонимно
На стороне AB треугольника ABC выбрана точка M так, что AM:MB=2:7. Прямая MN параллельна AC и пересекает сторону BC в точке N. Определите площадь ∆ABC. Если площадь ∆MBN равна 49 см².
Ответ
Анонимно
пусть ам=2х и мб=7х , тогда аб=9х. треугольник абс подобен треугольнику мбс (по двум углам ) 1)угол б- общий 2) угол бмн и угол бас равны. т.к треугольники подобны то площади их относятся как квадрат коэффициента подобия(коэффициента подобия=9/7), значит s abc : s mbn = 81/49; s abc : 49= 81/49 отсюда s abc=81см^2
Новые вопросы по Геометрии
1 - 4 классы
28 секунд назад
5 - 9 классы
1 минута назад
5 - 9 классы
3 минуты назад
5 - 9 классы
4 минуты назад
10 - 11 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад