Анонимно
В треугольник ABC, в котором LA = 90°, вписана окружность с центром О. Найдите отрезки, на которые точка касания этой окружности и прямой АС делит сторону АС, если ОС = 5 дм и АО = = 3^2 дм.
Ответ
Анонимно
Найти: АК, КС.
Красным цветов выделены дополнительные построения - радиусы, проведенные в т. касания. ОМ=ОR=OK=R
AMOK - квадрат, т.к. МО=ОК (признак квадрата) => MO=OK=MA=AK
Из прямоуг. ΔAMO по т. Пифагора:
АО²=АМ²+МО²
18=2МO²
MO²=9
MO=3 ⇒ AK=3
Из прямоугольного ΔСOK по т. Пифагора:
СО²=ОК²+КС²
25=9+КС²
КС²=16
КС=4
Красным цветов выделены дополнительные построения - радиусы, проведенные в т. касания. ОМ=ОR=OK=R
AMOK - квадрат, т.к. МО=ОК (признак квадрата) => MO=OK=MA=AK
Из прямоуг. ΔAMO по т. Пифагора:
АО²=АМ²+МО²
18=2МO²
MO²=9
MO=3 ⇒ AK=3
Из прямоугольного ΔСOK по т. Пифагора:
СО²=ОК²+КС²
25=9+КС²
КС²=16
КС=4
Новые вопросы по Геометрии
5 - 9 классы
60 секунд назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад