Анонимно
Отрезок AB является диаметром окружности с центром в точке О. В точках А и В проведены касательные к окружности. Через центр окружности проведена прямая, которая пересекает касательные в точках C и D. Докажите, что длины отрезков OC и OD равны.
Заранее огромное спасибо♥
Ответ
Анонимно
Поскольку касательные перпендикулярны радиусу в точке касания, то треугольники ОАС и OBD прямоугольные. Рассмотрим их. Здесь:
- АО=ВО как радиусы окружности;
- <COA=<DOB как вертикальные углы.
Используем один из признаков равенства прямоугольных треугольников: если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. Значит, в равных треугольниках ОАС и OBD равны и их гипотенузы. ОС=OD.
- АО=ВО как радиусы окружности;
- <COA=<DOB как вертикальные углы.
Используем один из признаков равенства прямоугольных треугольников: если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. Значит, в равных треугольниках ОАС и OBD равны и их гипотенузы. ОС=OD.
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
3 минуты назад
Длина экватора 40 000 000 м. Найдите радиус земли в метрах, считая, что она имеет шарообразную форму
5 - 9 классы
5 минут назад
5 - 9 классы
7 минут назад
5 - 9 классы
7 минут назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад