Анонимно
Основания равнобедренной трапеции равны 240 и 70. Радиус описанной окружности равен 125.Найдите высоту трапеции, если центр описанной окружности находится внутри трапеции.
Ответ
Анонимно
Части высоты, разделённые центром окружности, составляют:
h₁ = √(125²-(70/2)²) = √(15625-1225) = √14400 = 120.
h₂ = √(125²-(240/2)²) = √(15625-14400) = √1225 = 35.
H = h₁ + h₂ = 120 + 35 = 155.
h₁ = √(125²-(70/2)²) = √(15625-1225) = √14400 = 120.
h₂ = √(125²-(240/2)²) = √(15625-14400) = √1225 = 35.
H = h₁ + h₂ = 120 + 35 = 155.
Новые вопросы по Геометрии
1 - 4 классы
30 секунд назад
10 - 11 классы
1 минута назад
5 - 9 классы
2 минуты назад
5 - 9 классы
4 минуты назад
10 - 11 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад