Анонимно
радиус окружности описанной около правильного четырёхугольника равна 6√2 вычислите отношение площади четырёхугольника к площади круга вписанного в данный четырёхугольник
Ответ
Анонимно
Правильный четырехугольник - это квадрат. Радиус описанной окружности равен половине его диагонали, значит, диагональ квадрата равна 12√2. Известно, что сторона квадрата в √2 раз меньше его диагонали, значит, сторона равна 12. Площадь квадрата равна квадрату его стороны, то есть S=12²=144.
Диаметр вписанного в квадрат круга равен стороне квадрата, а радиус круга равен половине диаметра, значит, радиус равен 6. Площадь круга равна πR², то есть 36π. Отношение площади квадрата к площади круга, вписанного в него, равно 144/36π=4/π.
Диаметр вписанного в квадрат круга равен стороне квадрата, а радиус круга равен половине диаметра, значит, радиус равен 6. Площадь круга равна πR², то есть 36π. Отношение площади квадрата к площади круга, вписанного в него, равно 144/36π=4/π.
Новые вопросы по Геометрии
5 - 9 классы
29 секунд назад
10 - 11 классы
3 минуты назад
5 - 9 классы
4 минуты назад
5 - 9 классы
5 минут назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад