Анонимно
Ребро правильного тетраэдра равно а.Чему равен равен радиус полусферы,касающейся боковых граней тетраэдра, центр которой лежит на основании тетраэдра?
Ответ
Анонимно
Вот вам решение, над которым придется подумать :))))
Если ребро у тетраэдра равно b,
то высота H = b√6/3;
радиус вписанной сферы r = b√6/12 = H/4;
Если теперь сделать сечение параллельно одной из граней (назовем его "основанием") через центр вписанной сферы, то получится новый тетраэдр как раз с вписанной в него полусферой именно так, как задано в задаче.
Очевидно, что ребро такого тетраэдра a = 3b/4;
или, отсюда
r = a√6/9;
Если ребро у тетраэдра равно b,
то высота H = b√6/3;
радиус вписанной сферы r = b√6/12 = H/4;
Если теперь сделать сечение параллельно одной из граней (назовем его "основанием") через центр вписанной сферы, то получится новый тетраэдр как раз с вписанной в него полусферой именно так, как задано в задаче.
Очевидно, что ребро такого тетраэдра a = 3b/4;
или, отсюда
r = a√6/9;
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
5 - 9 классы
2 минуты назад
5 - 9 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад