Анонимно
Стороны оснований правильной усеченной треугольной пирамиды равны 2 и 4 см, угол наклона боковых граней к основанию равен 60 градусам. Найдите объём пирамиды.
ОТДАМ ВСЕ 35 БАЛЛОВ, КОТОРЫЕ ЕСТЬ!!!!!!!!!
Ответ
Анонимно
Ответ:
Боковая грань усечённой пирамиды - равнобокая трапеция с основаниями 2 и 4 см и острым углом при большем основании, равным 60 градусов.
Боковое ребро L пирамиды равно: L = ((4 - 2)/2)/cos 60° = 1/(1/2) = 2 см.
Наклонная высота h боковой грани равна:
h = √(L² -((4-2)/2)²) = √(4 - 1) = √3 см.
Теперь проведём вертикальное сечение пирамиды через наклонные высоты противоположных боковых граней.
В сечении получим равнобокую трапецию с основаниями 2 и 4 см, боковые стороны которой равны √3 см.
Высота Н такой трапеции равна высоте пирамиды
Н = √((√3)² - ((4-2)/2)²) = √(3 - 1) = √2 см
Ответ: 2см
Новые вопросы по Геометрии
10 - 11 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
5 - 9 классы
3 минуты назад
5 - 9 классы
3 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад