Анонимно

Стороны оснований правильной усеченной треугольной пирамиды равны 2 и 4 см, угол наклона боковых граней к основанию равен 60 градусам. Найдите объём пирамиды.

ОТДАМ ВСЕ 35 БАЛЛОВ, КОТОРЫЕ ЕСТЬ!!!!!!!!!

Ответ

Анонимно

Ответ:

Боковая грань усечённой пирамиды - равнобокая трапеция с основаниями 2 и 4 см и острым углом при большем основании, равным 60 градусов.

Боковое ребро L пирамиды равно: L = ((4 - 2)/2)/cos 60° = 1/(1/2) = 2 см.

Наклонная высота h боковой грани равна:

h = √(L² -((4-2)/2)²) = √(4 - 1) = √3 см.

Теперь проведём вертикальное сечение пирамиды через наклонные высоты противоположных боковых граней.

В сечении получим равнобокую трапецию с основаниями 2 и 4 см, боковые стороны которой равны √3 см.

Высота Н такой трапеции равна высоте пирамиды

Н = √((√3)² - ((4-2)/2)²) = √(3 - 1) = √2 см

Ответ: 2см