Анонимно
Докажите, что центры тяжести четырёх
треугольников, вершины которых совпадают с тремя вершинами данного четырехугольника, являются вершинами четырехугольника, гомотетичного данному.
Ответ
Анонимно
Прямо, как мысль катилась :)
Для произвольной точки O и произвольного треугольника ABC с центром тяжести G
OG = (OA + OB +OC)/3; (жирным обозначены вектора);
Пусть теперь O - центр тяжести всего четырехугольника. Тогда
OD = -(OA + OB + OC) = -3*OG;
Легко видеть, что так же точно OA = -3*OG1; OB = -3*OG2; OC = -3*OG3;
где G1 - центр тяжести CBD, G2 - ACD; G3 - ABD;
То есть многоугольник GG1G2G3 получается из ABCD при пребразовании гомотетии с центром в точке O и коэффициентом k = -1/3;
Для произвольной точки O и произвольного треугольника ABC с центром тяжести G
OG = (OA + OB +OC)/3; (жирным обозначены вектора);
Пусть теперь O - центр тяжести всего четырехугольника. Тогда
OD = -(OA + OB + OC) = -3*OG;
Легко видеть, что так же точно OA = -3*OG1; OB = -3*OG2; OC = -3*OG3;
где G1 - центр тяжести CBD, G2 - ACD; G3 - ABD;
То есть многоугольник GG1G2G3 получается из ABCD при пребразовании гомотетии с центром в точке O и коэффициентом k = -1/3;
Новые вопросы по Геометрии
Студенческий
4 месяца назад
5 - 9 классы
4 месяца назад
5 - 9 классы
4 месяца назад
5 - 9 классы
4 месяца назад
4. Стороны параллелограмма равны 3 и 5 см. Может ли диагональ этого параллелограмма равняться 10 см.
5 - 9 классы
4 месяца назад
Нужен ответ
10 - 11 классы
7 месяцев назад
Студенческий
7 месяцев назад
Студенческий
7 месяцев назад
Студенческий
7 месяцев назад
Студенческий
7 месяцев назад