Анонимно
Площадь круга,ограниченного окружностью, описанной около прямоугольника ABCD , равна [tex] \frac{169}{4} [/tex] [tex] \pi [/tex] см² . расстояние от вершины B до прямой, содержащей диагональ AC, равно 6 см. вычислите площадь прямоугольника
Ответ
Анонимно
Окружность описана вокруг прямоугольника.
Диаметром описанной окружности является диагональ прямоугольника .
Найдем этот диаметр из формулы площади круга:
S=πr²
r²=S:π
r²=π(169:4):π
r=13/2
d=2r=13 см
Расстояние от точки до прямой - отрезок, перпендикулярный этой прямой.
Расстояние от вершины B до прямой, содержащей диагональ AC, - это высота ВН ⊿АВС, опущенная из прямого угла на гипотенузу АС.
Высота прямоугольного треугольника, проведенная из вершины прямого
угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
ВН²=АН*НС
Пусть АН=х, тогда НС=13-х
36=х(13-х)
х²-13х+36=0
Решив квадратное уравнение, получим два корня: 4 и 9.
АН=4, НД=9
По т.Пифагора из прямоугольного треугольника АВН найдем АВ.
АВ²=36+16=52
АВ= √52
ВС²=81+36=117
ВС=√117
Площадь прямоугоольника равна произведению его сторон:
S=АВ*ВС=√52*√117=√6084=78 см²
Диаметром описанной окружности является диагональ прямоугольника .
Найдем этот диаметр из формулы площади круга:
S=πr²
r²=S:π
r²=π(169:4):π
r=13/2
d=2r=13 см
Расстояние от точки до прямой - отрезок, перпендикулярный этой прямой.
Расстояние от вершины B до прямой, содержащей диагональ AC, - это высота ВН ⊿АВС, опущенная из прямого угла на гипотенузу АС.
Высота прямоугольного треугольника, проведенная из вершины прямого
угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
ВН²=АН*НС
Пусть АН=х, тогда НС=13-х
36=х(13-х)
х²-13х+36=0
Решив квадратное уравнение, получим два корня: 4 и 9.
АН=4, НД=9
По т.Пифагора из прямоугольного треугольника АВН найдем АВ.
АВ²=36+16=52
АВ= √52
ВС²=81+36=117
ВС=√117
Площадь прямоугоольника равна произведению его сторон:
S=АВ*ВС=√52*√117=√6084=78 см²
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
10 - 11 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад