Анонимно
точка А лежит на медиане проведённой к основанию равнобедренного треугольника. Докажите,что она одинаково удалена от вершин основания
Ответ
Анонимно
Обозначим треугольник как DBC, а медиану BM.
Проведем отрезки AD и AC.
Рассмотрим треугольники DAB и BAC. DB=BC (ΔDBC равнобедренный), BA - общая сторона, ∠DBA=∠CBA(медиана, проведенная к основанию в равнобедренном треугольнике является биссектрисой) ⇒ ΔDAB=ΔBAC по первому признаку равенства Δ.
Из равенства следует соответственное равенство сторон треугольников DAB и BAC ⇒ AD=AC, что и требовалось доказать.
Проведем отрезки AD и AC.
Рассмотрим треугольники DAB и BAC. DB=BC (ΔDBC равнобедренный), BA - общая сторона, ∠DBA=∠CBA(медиана, проведенная к основанию в равнобедренном треугольнике является биссектрисой) ⇒ ΔDAB=ΔBAC по первому признаку равенства Δ.
Из равенства следует соответственное равенство сторон треугольников DAB и BAC ⇒ AD=AC, что и требовалось доказать.
Ответ
Анонимно
Медиана, проведенная к основанию равнобедренного треугольника, является его высотой и биссектрисой угла при вершине. Высота в равнобедренном треугольнике проведенная к основанию - серединный перпендикуляр. Любая точка серединного перпендикуляра равноудалена от концов отрезка, а в нашем случае от вершин основания. ч.т.д.
Новые вопросы по Геометрии
10 - 11 классы
2 минуты назад
Студенческий
3 минуты назад
5 - 9 классы
7 минут назад
5 - 9 классы
8 минут назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад