Анонимно
касательные в точках а и в к окружности с центром в точке о пересекаются под углом в 56 градусов. найти угол аво
Ответ
Анонимно
Пусть касательные пересекаются в точке Т, тогда АТ=ВТ (по свойству касательных), ∠АТВ=56°, ∠ТАО=∠ТВО=90° (по свойству касательной и радиуса окружности).
Рассмотрим ΔТАО, ∠АТО=1\2 ∠АТВ=28°
∠АОТ=90°-28°=62°
∠ТОВ=∠АОТ=62°
ΔАОВ - равнобедренный, т.к. образован радиусами окружности.
∠АОВ=2*62=124°, тогда ∠ОАВ=∠АВО=(180-124):2=28°
Ответ: 28 °
Рассмотрим ΔТАО, ∠АТО=1\2 ∠АТВ=28°
∠АОТ=90°-28°=62°
∠ТОВ=∠АОТ=62°
ΔАОВ - равнобедренный, т.к. образован радиусами окружности.
∠АОВ=2*62=124°, тогда ∠ОАВ=∠АВО=(180-124):2=28°
Ответ: 28 °
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
5 - 9 классы
2 минуты назад
1 - 4 классы
3 минуты назад
10 - 11 классы
3 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад