Анонимно
Высота параллелограмма имеет длину,равную 5 корень из 6. Равнобедренный треугольник, боковая сторона которого равна 7, а высота, проведённая к основанию, равна 5, имеет такую же площадь, что и параллелограмм.Найдите длину стороны параллелограмма,к которой проведена высота.
Ответ
Анонимно
Пусть h₁ - высота параллелограмма, a - его основание, b - основание равнобедренного треугольника, h₂ - высота равнобедренного треугольника, c - его боковая сторона.
Площадь параллелограмма равна произведению основания на высоту:
[tex]S = h_{1}a = 5 \sqrt{6} a[/tex]
В равнобедренном треугольника высота, проведённая к основанию, является медианой и биссектрисой.
По теореме Пифагора (рассматривается треугольник, образованный высотой, а не весь равнобедренный треугольник):
[tex] \dfrac{1}{2}b = \sqrt{c^2 - h_{2}^{2}} = \sqrt{7^2 - 5^2} = \sqrt{49 - 25} = \sqrt{24} = 2 \sqrt{6} [/tex]
Тогда [tex]b = 4 \sqrt{6} [/tex]
Площадь треугольника равна половине произведения основания на высоту:
[tex]S = \dfrac{1}{2}bh_{2} = \dfrac{1}{2} \cdot 4 \sqrt{6 } \cdot 5 = 10 \sqrt{6} [/tex]
Т.к. площади треугольника и параллелограмма равны, то
[tex]5 \sqrt{6} a = 10 \sqrt{6} =\ \textgreater \ a = \dfrac{10 \sqrt{6} }{5 \sqrt{6} } = 2[/tex]
Ответ: 2.
Площадь параллелограмма равна произведению основания на высоту:
[tex]S = h_{1}a = 5 \sqrt{6} a[/tex]
В равнобедренном треугольника высота, проведённая к основанию, является медианой и биссектрисой.
По теореме Пифагора (рассматривается треугольник, образованный высотой, а не весь равнобедренный треугольник):
[tex] \dfrac{1}{2}b = \sqrt{c^2 - h_{2}^{2}} = \sqrt{7^2 - 5^2} = \sqrt{49 - 25} = \sqrt{24} = 2 \sqrt{6} [/tex]
Тогда [tex]b = 4 \sqrt{6} [/tex]
Площадь треугольника равна половине произведения основания на высоту:
[tex]S = \dfrac{1}{2}bh_{2} = \dfrac{1}{2} \cdot 4 \sqrt{6 } \cdot 5 = 10 \sqrt{6} [/tex]
Т.к. площади треугольника и параллелограмма равны, то
[tex]5 \sqrt{6} a = 10 \sqrt{6} =\ \textgreater \ a = \dfrac{10 \sqrt{6} }{5 \sqrt{6} } = 2[/tex]
Ответ: 2.
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
10 - 11 классы
2 минуты назад
5 - 9 классы
3 минуты назад
5 - 9 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад