Анонимно
Высота ромба равна 24 см,а его диагонали относятся как 3 : 4.Найти площадь ромба.
Ответ
Анонимно
Ромб АВСД, диагонали ВД:АС=3:4, высота ВН=24 (опущена на сторону АД).
Пусть диагонали ромба ВД=3х, АС=4х.
Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам, значит сторона ромба по т.Пифагора:
АД²=(АС²+ВД²)/4=(16х²+9х²)/4=25х²/4.
АД=5х/2
Площадь ромба можно найти S=ВД*АС/2=АД*ВН
3х*4х/2=5х/2*24
6х²=60х
х=10
Значит ВД=30, АС=40, а площадь S=30*40/2=600
Пусть диагонали ромба ВД=3х, АС=4х.
Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам, значит сторона ромба по т.Пифагора:
АД²=(АС²+ВД²)/4=(16х²+9х²)/4=25х²/4.
АД=5х/2
Площадь ромба можно найти S=ВД*АС/2=АД*ВН
3х*4х/2=5х/2*24
6х²=60х
х=10
Значит ВД=30, АС=40, а площадь S=30*40/2=600
Новые вопросы по Геометрии
Студенческий
4 месяца назад
5 - 9 классы
4 месяца назад
5 - 9 классы
4 месяца назад
5 - 9 классы
4 месяца назад
4. Стороны параллелограмма равны 3 и 5 см. Может ли диагональ этого параллелограмма равняться 10 см.
5 - 9 классы
4 месяца назад
Нужен ответ
10 - 11 классы
7 месяцев назад
Студенческий
7 месяцев назад
Студенческий
7 месяцев назад
Студенческий
7 месяцев назад
Студенческий
7 месяцев назад