Анонимно
Из точки пересечения диагоналей квадрата ABCD со стороной 4см проведен перпендикуляр МО к его плоскости равный 3 см.Найдите расстояние от вершин квадрата до точки М.
Решение с рисунком!!!!!!
Ответ
Анонимно
Так как О - точка пересечения диагоналей квадрата, а они при пересечении делятся пополам под прямым углом, - треугольник АОD прямоугольный равнобедренный, и АО равна половине диагонали квадрата.
Диагональ d=4√2
АО=2√2.
Половины диагоналей квадрата - проекции наклонных из М к каждой его вершине. Наклонные равны между собой, так как равны их проекции на плоскость квадрата. ⇒ Расстояние от каждой вершины квадрата до точки М одинаково.
АМ=ВМ=СМ=DМ
Из прямоугольного треугольника АМО по т. Пифагора
АМ=√(АО²+МО²)= √(8+9=√17 см
--------
bzs@
Диагональ d=4√2
АО=2√2.
Половины диагоналей квадрата - проекции наклонных из М к каждой его вершине. Наклонные равны между собой, так как равны их проекции на плоскость квадрата. ⇒ Расстояние от каждой вершины квадрата до точки М одинаково.
АМ=ВМ=СМ=DМ
Из прямоугольного треугольника АМО по т. Пифагора
АМ=√(АО²+МО²)= √(8+9=√17 см
--------
bzs@
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
10 - 11 классы
2 минуты назад
5 - 9 классы
2 минуты назад
5 - 9 классы
2 минуты назад
5 - 9 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад