Анонимно
В треугольнике АВС, угол А=90 градусов, угол В=60 градусов. на стороне АС отмечена точка D так, что угол DBC=30 градусов и DA= 4 см. Найти АС и расстояние от точки D до ВС
Ответ
Анонимно
Треугольник DAB - прямоугольный. Угол DBA = 30 градусов, так как угол В 60 градусов по условию и угол DBC=30 градусов.
DB= 8 . В прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы. Значит гипотенуза в два раза больше катета.
Обозначим основание перпендикуляра из точки D к стороне СВ буквой К
В треугольнике DKB угол DKB= 90 градусов, угол KBD = 30 градусов, Гипотенуза DB=8, значит DK = 4
В треугольнике CDK угол DCK=30 градусов, катет DK=4, значит гипотенуза DC=8
И потому АС = CD +DA=8+4=12
Источник: предыдущее решение этой задачи.
DB= 8 . В прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы. Значит гипотенуза в два раза больше катета.
Обозначим основание перпендикуляра из точки D к стороне СВ буквой К
В треугольнике DKB угол DKB= 90 градусов, угол KBD = 30 градусов, Гипотенуза DB=8, значит DK = 4
В треугольнике CDK угол DCK=30 градусов, катет DK=4, значит гипотенуза DC=8
И потому АС = CD +DA=8+4=12
Источник: предыдущее решение этой задачи.
Новые вопросы по Геометрии
5 - 9 классы
3 минуты назад
10 - 11 классы
5 минут назад
1 - 4 классы
5 минут назад
10 - 11 классы
5 минут назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад