Анонимно
Около треугольника с углами 45∘ и 60∘ описана окружность радиуса 2√3+√8−2. Найдите радиус вписанной в треугольник окружности.
Ответ
Анонимно
Находим третий угол: 180-45-60 = 75°.
Зная радиус R = 2√3+√8−2 описанной окружности и углы треугольника находим стороны:
а = 2Rsin A = 2*(2√3+√8−2)*sin 45° = 2*(2√3+√8−2)*(√2/2) =
= 2√6+4-2√2 ≈ 6,070552.
b = 2Rsin B = 2*(2√3+√8−2)*sin 60° = 2*(2√3+√8−2)*(√3/2) =
= 2√6+6-2√3 ≈ 7,434878.
c = 2Rsin C = 2*(2√3+√8−2)*sin 75° = 2*(2√3+√8−2)*((1+√3)/(2√2) =
= (√3+√2-1)*(√2+√6) ≈ 8,292529.
По формуле Герона находим площадь треугольника.
S = √(p(p-a)(p-b)(p-c)).
Здесь полупериметр р = (а+в+с)/2 = 10,898979.
Подставив данные, находим: S = 21,79795897 кв.ед.
Теперь можно найти искомый радиус вписанной окружности:
r = S/p = 21,79795897/10,898979 = 2.
Зная радиус R = 2√3+√8−2 описанной окружности и углы треугольника находим стороны:
а = 2Rsin A = 2*(2√3+√8−2)*sin 45° = 2*(2√3+√8−2)*(√2/2) =
= 2√6+4-2√2 ≈ 6,070552.
b = 2Rsin B = 2*(2√3+√8−2)*sin 60° = 2*(2√3+√8−2)*(√3/2) =
= 2√6+6-2√3 ≈ 7,434878.
c = 2Rsin C = 2*(2√3+√8−2)*sin 75° = 2*(2√3+√8−2)*((1+√3)/(2√2) =
= (√3+√2-1)*(√2+√6) ≈ 8,292529.
По формуле Герона находим площадь треугольника.
S = √(p(p-a)(p-b)(p-c)).
Здесь полупериметр р = (а+в+с)/2 = 10,898979.
Подставив данные, находим: S = 21,79795897 кв.ед.
Теперь можно найти искомый радиус вписанной окружности:
r = S/p = 21,79795897/10,898979 = 2.
Новые вопросы по Геометрии
10 - 11 классы
2 минуты назад
5 - 9 классы
3 минуты назад
1 - 4 классы
3 минуты назад
5 - 9 классы
3 минуты назад
5 - 9 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад