Анонимно
В равнобедренном треугольнике ABC с основанием BC угол при вершине A равен 80o. Внутри треугольника ABC взята точка M так, что MBC = 30o и MCB = 10o. Найдите величину угла AMC.
Ответ
Анонимно
В равнобедренном треугольнике углы при основании равны, значит <ABC=<ACB=(180-<BAC)/2=(180-80)/2=50°
<АВМ=<АВС-<МВС=50-30=20°
<АСМ=<АСВ-<МСВ=50-10=40°
Рассмотрим треугольник ВМС:
<ВМС=180-<МВС-<МСВ=180-30-10=140°.
По теореме синусов МС/sin 30=BC/ sin 140
MC=BC*sin 30/sin 140=BC/2sin (180-40)=BC/2sin 40
Если в треугольнике АВС из вершины А опустить высоту АН на основание ВС, то она же будет и медиана и биссектриса. Из полученного треугольника АНС (<НАС=80/2=40°, <АНС=90°, НС=ВС/2) по теореме синусов
НС/sin 40=АC/ sin 90
АC=BC/2sin 40
Получается, что МС=АС, значит треугольник АМС - равнобедренный
<САМ=<АМС=(180-<ACM)/2=(180-40)/2=70°.
<АВМ=<АВС-<МВС=50-30=20°
<АСМ=<АСВ-<МСВ=50-10=40°
Рассмотрим треугольник ВМС:
<ВМС=180-<МВС-<МСВ=180-30-10=140°.
По теореме синусов МС/sin 30=BC/ sin 140
MC=BC*sin 30/sin 140=BC/2sin (180-40)=BC/2sin 40
Если в треугольнике АВС из вершины А опустить высоту АН на основание ВС, то она же будет и медиана и биссектриса. Из полученного треугольника АНС (<НАС=80/2=40°, <АНС=90°, НС=ВС/2) по теореме синусов
НС/sin 40=АC/ sin 90
АC=BC/2sin 40
Получается, что МС=АС, значит треугольник АМС - равнобедренный
<САМ=<АМС=(180-<ACM)/2=(180-40)/2=70°.
Ответ
Анонимно
∠B = ∠C =(180°-80°) : 2 = 50°. AO - биссектриса угла А, где точка О - точка пересечения ВМ и АО. Имеем:
▲AOC = ▲AOB по первому признаку, отсюда ∠ACO =∠ABO = ∠ABC - ∠MBC= 20°. Тогда ∠AOB =∠AOC = 180° - ∠ABO - 1/2∠A = 120°
Поэтому ∠MOC = 360°- ∠AOC - ∠AOB = 120° , а ∠OCM = ∠ACB -∠OCA -∠MCB = 20°
Имеем: ▲ACO = ▲MCO (∠MOC =∠AOC, ∠OCM =∠OCA, OC - общая)
отсюда
АС = МС и ▲AМС - равнобедренный. Получаем:∠ACM =∠C -∠MCB=40°, ∠AMC= (180°-40°) : 2 = 70°
Ответ: ∠AMC = 70°
(смотрите рисунок ниже)Новые вопросы по Геометрии
10 - 11 классы
51 секунда назад
5 - 9 классы
1 минута назад
1 - 4 классы
2 минуты назад
5 - 9 классы
2 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад