Анонимно
около четырехугольника ABCD МОЖНО описать окружность.Точка p-основание перпендикуляра,опуденного из точки A на прямую BC, Q-из A на DC,R-из D на AB и T-D B.C..ДОКАЖИТЕ ЧТО ТОЧКИ P,Q,R и T лежат на одной окружности
Ответ
Анонимно
Достаточно доказать, что RPTQ – равнобокая трапеция. Четырёхугольник ARDQ – вписанный, поэтому ∠RQD = ∠DAR. Также, поскольку четырёхугольник ABCD – вписанный, то ∠BCD = 180° – ∠DAR. Cледовательно, ∠RQD + ∠BCD = 180°, то есть прямые PT и RQ параллельны.
Докажем теперь, что в трапеции RPTQ диагонали равны. Четырёхугольник APCQ вписан в окружность с диаметром AC, поэтому
PQ = AC·sin∠BCD. Aналогично, RT = BD·sin∠ABC. Но из вписанности четырёхугольника ABCD следует, что
Значит, PQ = RT, то есть трапеция – равнобокая.
Новые вопросы по Геометрии
10 - 11 классы
52 секунды назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
1 - 4 классы
2 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад