Анонимно
ПОМОГИТЕ, ПРОШУ!!!
Докажите, что прямая, проходящая через две точки пересечения двух окружностей, делит пополам отрезок, соединяющий точки касания этих окружностей с их общей касательной.
Ответ
Анонимно
Достаточно немного "повернуть" взгляд на условие, что бы все сразу стало очевидно.
Есть точка, в которой пересекаются прямая, проходящая через точки пересечения окружностей, и их общая касательная.
Можно считать, что из этой точки проведены касательные к обеим окружностям и секущая.
Квадраты длин касательных к обеим окружностям очевидно равны произведению расстояний от этой точки до первой и второй точек пересечения окружностей (ну, есть такая связь между длинами касательной и секущей - квадрат длины касательной равен произведению отрезков секущей). То есть, расстояния от этой точки до точек касания равны между собой. Это всё :).
Есть точка, в которой пересекаются прямая, проходящая через точки пересечения окружностей, и их общая касательная.
Можно считать, что из этой точки проведены касательные к обеим окружностям и секущая.
Квадраты длин касательных к обеим окружностям очевидно равны произведению расстояний от этой точки до первой и второй точек пересечения окружностей (ну, есть такая связь между длинами касательной и секущей - квадрат длины касательной равен произведению отрезков секущей). То есть, расстояния от этой точки до точек касания равны между собой. Это всё :).
Новые вопросы по Геометрии
1 - 4 классы
1 минута назад
5 - 9 классы
2 минуты назад
10 - 11 классы
3 минуты назад
10 - 11 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад