Анонимно
Из точки к плоскости проведены две наклонные.Найти длины наклонных,если одна из них на 7 см больше другой,а проекция наклонных равны 6 см и 15 см.
Ответ
Анонимно
Пусть x - длина наклонной с проекцией равной 6, тогда х+7 - длина наклонной с проекцией 15. Здесь также, как и в предыдущем номере, запишем две теоремы Пифагора: (высота)^2=(x+7)^2-225 и (высота)^2=x^2-36. Приравняв через высоту получаем, что: [tex](x+7)^2-225=x^2-36[/tex], тогда: [tex]x^2+14x+49-225=x^2-36[/tex]. Получаем, что 14x=140, значит x=10, а x+7=17.
Ответ: длина наклонной (с проекцией равной 6) равна 10, а длина наклонной (с проекцией 15) равна 17.
Ответ: длина наклонной (с проекцией равной 6) равна 10, а длина наклонной (с проекцией 15) равна 17.
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
5 - 9 классы
3 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад