Анонимно
Четырехугольник ABCD вписан в окружность.Угол ABC равен 92 градуса,угол CAD равен 60 градусов.Найдите угол ABD.
Ответ
Анонимно
Сумма противоположных углов вписанного в окружность четырехугольника равна 180°⇒
∠ АDC=180°-92°=88°
Для решения вспомним:
Вписанный угол равен половине центрального, опирающегося на ту же дугу.
Соединим центр окружности О с А, D и C.
Центральный угол DOC опирается на ту же дугу, что ∠САD.
∠DOC=2 ∠САD=120°
∆ DOC- равнобедренный, его углы при основании CD равны (180°-120°):2=30°
∠ВDА=∠CDA-∠ODA=88°-30°=58°
В равнобедренном ∆ AOD углы при основании AD равны 58°, ⇒ ∠AOD=180°-2•58°=64°
Искомый вписанный ∠АBD равен половине центрального ∠АОD.
∠АВD=64°:2=32°
Новые вопросы по Геометрии
1 - 4 классы
1 минута назад
5 - 9 классы
1 минута назад
10 - 11 классы
2 минуты назад
5 - 9 классы
3 минуты назад
5 - 9 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад