Анонимно
1. Неравенство треугольника (доказать).
Ответ
Анонимно
Теореме о неравенстве треугольника:
Длина любой стороны треугольника меньше суммы двух других его сторон.
Пусть АС - большая сторона треугольника.
Докажем, что АС < AB + BC.
Опустим высоту ВН на сторону АС.
В треугольнике напротив большего угла лежит большая сторона. В прямоугольном треугольнике прямой угол - самый большой, напротив него лежит гипотенуза, значит катет всегда меньше гипотенузы.
ΔАВН: АН < AB
ΔCBH: CH < BC, складываем неравенства и получаем:
АН + СН < AB + BC или
AC < AB + BC.
Так как теорема доказана для большей стороны, для двух других сторон она очевидно верна.
Длина любой стороны треугольника меньше суммы двух других его сторон.
Пусть АС - большая сторона треугольника.
Докажем, что АС < AB + BC.
Опустим высоту ВН на сторону АС.
В треугольнике напротив большего угла лежит большая сторона. В прямоугольном треугольнике прямой угол - самый большой, напротив него лежит гипотенуза, значит катет всегда меньше гипотенузы.
ΔАВН: АН < AB
ΔCBH: CH < BC, складываем неравенства и получаем:
АН + СН < AB + BC или
AC < AB + BC.
Так как теорема доказана для большей стороны, для двух других сторон она очевидно верна.
Новые вопросы по Геометрии
10 - 11 классы
1 минута назад
10 - 11 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад