Анонимно
В треугольнике ABC известно, что DE — средняя линия. Площадь треугольника CDE равна 12. Найдите площадь треугольника ABC.
Ответ
Анонимно
Средняя линия параллельна третьей стороне треугольника и равна ее половине:
DE║AB, DE = 1/2 AB.
∠CDE = ∠CAB как накрест лежащие углы при пересечении параллельных прямых DE и АВ секущей АС,
угол при вершине С общий для треугольников АВС и DEC, значит эти треугольники подобны по двум углам.
k = DE/AB = 1/2
Отношение площадей подобных треугольников равно квадрату коэффициента подобия:
Sdec : Sacb = k² = 1 : 4
Sabc = 4Sdec = 4 · 12 = 48
Новые вопросы по Геометрии
5 - 9 классы
2 минуты назад
5 - 9 классы
2 минуты назад
10 - 11 классы
2 минуты назад
5 - 9 классы
2 минуты назад
5 - 9 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад