Анонимно
Прямая АВ пересекает плоскость а под углом 30 градусов. АА1 - перпендикуляр, а ВА1 - проекция АВ на плоскости а. Найдите: 1) ВА1 и АА1, если АВ=24 см; 2) длину проекции ВА1 наклонной АВ, если АА1=8 см; 3) длину наклонной АВ и длину перпендикуляра АА1, если ВА1=15 см.
Ответ
Анонимно
Прямая АВ, перпендикуляр АА1 на плоскость "а" и проекция на плоскость прямой АВ образуют прямоугольный треугольник с углом АВА1 = 30 градусов и прямым углом АА1В. В прямоугольном треугольнике против угла 30 градусов лежит катет равный половине гипотенузы. Следовательно, 1) АА1= АВ/2 = 24/2 = 12 см. Из теоремы Пифагора (ВА1)²= (АВ)² – (АА1)² = 24² – 12² = 576 – 144 = 432. Отсюда ВА1 = √432 = 12√3 Если АА1 обозначить Х, то АВ = 2Х. Тогда в общем виде квадрат длины проекции (ВА1)² = (2Х)² – X²=3Х², а ВА1 = Х√3. Таким образом, можно сразу записать, что 2) ВА1 = 8√3. А вспомнив, что катет против 30 градусов равен половине гипотенузы, имеем АВ = АА1*2 = 8*2 = 16 см 3) Квадрат ВА1 = 15² = 225. И это равно 3Х². Т.е. 225 = 3Х². Отсюда Х²=225/3 = 75. Тогда Х = √75 = 5√3. За Х мы приняли АА1. Значит АА1 = Х = 5√3. Тогда АВ = 2Х= 2*5√3 = 10√3
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
10 - 11 классы
1 минута назад
5 - 9 классы
2 минуты назад
10 - 11 классы
2 минуты назад
5 - 9 классы
2 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад