Анонимно
Радиус основания конуса с вершиной P равен 6, а длина его образующей
равна 9. На окружности основания конуса выбраны точки A и B, делящие
окружность на две дуги, длины которых относятся как 1:3. Найдите площадь
сечения конуса плоскостью ABP.
Ответ
Анонимно
AP=BP=9,AO=BO=6,дуга АВ: дуга АnB=1^3
Дуга АВравна 360:(1+3)*1=90⇒<AOB=90⇒ΔAOB прямоугольный и равнобедренный⇒АВ=6√2
Сечение представляет равнобедренный треугольник АРВ
Его высота равна h=√(AP²-(AB/2)²)=√81-18=√63=3√7
Sс=1/2*AB*h=1/2*6√2*3√7=9√14
Дуга АВравна 360:(1+3)*1=90⇒<AOB=90⇒ΔAOB прямоугольный и равнобедренный⇒АВ=6√2
Сечение представляет равнобедренный треугольник АРВ
Его высота равна h=√(AP²-(AB/2)²)=√81-18=√63=3√7
Sс=1/2*AB*h=1/2*6√2*3√7=9√14
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
10 - 11 классы
3 минуты назад
5 - 9 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад