Анонимно
дан прямоугольный треугольник abc с гипотенузой ab, у которого угол B=56 градусов Найдите угол между высотой CH и биссектрисой CM
Ответ
Анонимно
В прямоугольном треугольнике угол между высотой CH и биссектрисой CM, проведенными из вершины прямого угла, равен половине разности острых углов треугольника.
Угол А = 90° - 56° = 34°.
Тогда искомый угол равен (56° - 34°)/2 = 22°/2 = 11°.
Это вытекает из рассмотрения прямоугольного треугольника, где катет при угле 56 градусов является гипотенузой.
Второй острый угол в нём равен 34°.
А угол до биссектрисы равен 45°.
Отсюда получаем 45°-34° = 11°.
Угол А = 90° - 56° = 34°.
Тогда искомый угол равен (56° - 34°)/2 = 22°/2 = 11°.
Это вытекает из рассмотрения прямоугольного треугольника, где катет при угле 56 градусов является гипотенузой.
Второй острый угол в нём равен 34°.
А угол до биссектрисы равен 45°.
Отсюда получаем 45°-34° = 11°.
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
3 минуты назад
5 - 9 классы
5 минут назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад