Анонимно
Боковое ребро правильной четырехугольной пирамиды равна 10 см и образует с ее высотой угол 30 °. Найдите линейный угол двугранного угла при основании.
Ответ
Анонимно
Боковое ребро является гипотенузой в треугольнике, где катеты - высота пирамиды и половина диагонали основания.
Находим:
- высоту пирамиды: Н = 10*cos 30° = 10*(√3/2) = 5√3 см.
- половину диагонали основания: ОС = 10*sin 30° = 10*0.5 = 5 см.
Для нахождения двугранного угла найдём перпендикуляр из центра основания на ребро основания:
ОК = ОС*cos 45° = 5*(√2 / 2) = 5√2 / 2.
Отсюда тангенс двугранного угла при основании равен:
tg α = H / OK = 5√3 / (5√2 / 2) = 2√3 / √2 = 2.44949.
а угол равен: α = arc tg 2.44949 = 1.1832 радиан = 67.79235°.
Находим:
- высоту пирамиды: Н = 10*cos 30° = 10*(√3/2) = 5√3 см.
- половину диагонали основания: ОС = 10*sin 30° = 10*0.5 = 5 см.
Для нахождения двугранного угла найдём перпендикуляр из центра основания на ребро основания:
ОК = ОС*cos 45° = 5*(√2 / 2) = 5√2 / 2.
Отсюда тангенс двугранного угла при основании равен:
tg α = H / OK = 5√3 / (5√2 / 2) = 2√3 / √2 = 2.44949.
а угол равен: α = arc tg 2.44949 = 1.1832 радиан = 67.79235°.
Новые вопросы по Геометрии
5 - 9 классы
22 секунды назад
5 - 9 классы
1 минута назад
10 - 11 классы
1 минута назад
5 - 9 классы
1 минута назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад