Анонимно
Пожалуйста, помогите!!! (баллов вообще не жалко)
В принципе, легкая задача, но я ее недопонимаю.
Стороны ВС и АD четырёхугольника АВСD параллельны. Диагонали точкой пересечения делятся на четыре отрезка, два из которых, принадлежащие разным диагоналям и примыкающие к одной из параллельных сторон, равны между собой. Докажите, что стороны АВ и СD равны.
Ответ
Анонимно
Пусть О - точка пересечения диагоналей.Угод ВДС=углу ВДА как накрестлежащие. УголСАД=углуАСВ как накрестлежащие. т.к. ВО=ОС, то треугольник ВОС равнобедренный. У равнобедренного треугольника углы при основании равны. Значит угол ДВС=углуАСВ=углуСАД=углуВДА. Сл-но треугольник АОД равнобедренный (углы при основании равны) и АО=ОД.
т.к. АО=ОС, ВО=ОД и уголВОА=углуСОД (вертикальные углы), то треугольник ВОА=треугольникуСОД (по 2-м сторонам и углу между ними). Сл-но АВ=СД.
т.к. АО=ОС, ВО=ОД и уголВОА=углуСОД (вертикальные углы), то треугольник ВОА=треугольникуСОД (по 2-м сторонам и углу между ними). Сл-но АВ=СД.
Новые вопросы по Геометрии
5 - 9 классы
4 минуты назад
10 - 11 классы
5 минут назад
5 - 9 классы
6 минут назад
5 - 9 классы
7 минут назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад