Анонимно
В прямоугольном треугольнике ABC с гипотенузой AB проведена высота CH. найдите HA, если угол B=60,BH=2 см
Ответ
Анонимно
Дано: Δ АВС - прямоугольный, АВ - гипотенуза, СН - высота, ∠В=60°, ВН=2 см. Найти АН.
Решение:
рассмотрим Δ ВСН - прямоугольный, ∠ВСН=90-60=30°, тогда ВС=2ВН=4 см как катет, лежащий против угла 30°.
По теореме Пифагора
СН=√(ВС²-ВН²)=√(16-4)=√12=2√3 см.
Рассмотрим Δ АСН - прямоугольный, ∠А=90°-∠В=90°-60°=30°, тогда АС=2СН=4√3 см.
По теореме Пифагора АН=√(АС²-СН²)=√(48-12)=√36=6 см.
или: СН²=АН*ВН; 12=2*АН; АН=6 см.
Ответ: 6 см.
Новые вопросы по Геометрии
5 - 9 классы
10 минут назад
5 - 9 классы
17 минут назад
5 - 9 классы
36 минут назад
5 - 9 классы
37 минут назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад