Анонимно
Точка равноудалена от вершин прямоугольного треугольника на 13 см.Вычислить расстояние от этой точки до плоскости,если катеты равны 6 и 8 см.
Ответ
Анонимно
В прямоугольном треугольнике точка, равноудалённая от вершин, находится на середине гипотенузы ( по свойству медианы).
Гипотенуза равна √(6² + 8²) = √(36 + 64) = √100 = 10.
Заданная точка находится на перпендикуляре к плоскости треугольника, проведенном к середине гипотенузы.
Тогда расстояние точки до плоскости равно:
Н = √(13² - (10/2)²) = √(169 - 25) = √144 = 12.
Гипотенуза равна √(6² + 8²) = √(36 + 64) = √100 = 10.
Заданная точка находится на перпендикуляре к плоскости треугольника, проведенном к середине гипотенузы.
Тогда расстояние точки до плоскости равно:
Н = √(13² - (10/2)²) = √(169 - 25) = √144 = 12.
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
3 минуты назад
5 - 9 классы
7 минут назад
5 - 9 классы
8 минут назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад