Анонимно

Периметр четырехугольника описанного около окружности равен 56 две его стороны равны 6 и 14 найдите большую из оставшийся сторон

Ответ

Анонимно
Если четырехугольник можно описать около окружности, значит, суммы длин его противоположных сторон равны. Значит, сумма длин двух противоположных сторон равна половине периметра, то есть, 56\2=28. Так как 14+6=20, стороны из условия являются соседними. Тогда против стороны длины 6 лежит сторона длины 28-6=22, а против стороны длины 14 лежит сторона длины 28-14=14. То есть, большая из оставшихся сторон равна 22.