Анонимно
В треугольнике ABC через точку P, лежащую на стороне BC, проведены прямые, пересекающие AB и AC соответственно в точках К и М параллельные АС и АВ. Докажите подобие треугольников BKP и PMC. Пожалуйста, помогите с этим заданием!
Ответ
Анонимно
Так как АС║КР и ВС - секущая, то ∠МСР=∠КРВ.
Т.к. АВ║МР и ВС - секущая, то ∠КВР=∠МРС.
Значит третья пара тоже равных углов.
Этого достаточно, чтобы объявить треугольники ВКР и РМС подобными.
Т.к. АВ║МР и ВС - секущая, то ∠КВР=∠МРС.
Значит третья пара тоже равных углов.
Этого достаточно, чтобы объявить треугольники ВКР и РМС подобными.
Новые вопросы по Геометрии
5 - 9 классы
32 секунды назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
1 - 4 классы
1 минута назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад