Анонимно
Дан куб ABCDA1B1C1D1. Точка О — центр грани ABCD.
Используя метод координат, найдите угол между прямыми ВО и A1D.
Ответ
Анонимно
Разместим куб вершиной В в начало координат, ребром АВ по оси ОХ.
Находим координаты необходимых точек:
Координаты точки В: x y z
0 0 0,
Координаты точки О 0.5 0.5 0,
Координаты точки А1 1 0 1,
Координаты точки Д 1 1 0.
По этим координатам определяем координаты векторов:
х у z Длина
Вектор ВО 0.5 0.5 0 0.70711 = √2/2,
Вектор А1Д 0 1 -1 1.41421 = √2.
Находим косинус угла между векторами:
[tex]cos \alpha = \frac{0,5*0+0,5*1+0*(-1)}{ \frac{ \sqrt{2} }{2} * \sqrt{2} } = \frac{0,5}{1} =0,5.[/tex]
Данному косинусу соответствует угол 60 градусов.
Находим координаты необходимых точек:
Координаты точки В: x y z
0 0 0,
Координаты точки О 0.5 0.5 0,
Координаты точки А1 1 0 1,
Координаты точки Д 1 1 0.
По этим координатам определяем координаты векторов:
х у z Длина
Вектор ВО 0.5 0.5 0 0.70711 = √2/2,
Вектор А1Д 0 1 -1 1.41421 = √2.
Находим косинус угла между векторами:
[tex]cos \alpha = \frac{0,5*0+0,5*1+0*(-1)}{ \frac{ \sqrt{2} }{2} * \sqrt{2} } = \frac{0,5}{1} =0,5.[/tex]
Данному косинусу соответствует угол 60 градусов.
Новые вопросы по Геометрии
5 - 9 классы
31 секунда назад
Студенческий
1 минута назад
10 - 11 классы
2 минуты назад
5 - 9 классы
3 минуты назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад