Анонимно
Серединные перпендикуляры треугольника АВС пересекаются в точке О. Найдите длину стороны АВ, если ОА = 8 см, ∠АОВ = 600.
пожалуйста помогите
Ответ
Анонимно
Т.К. ОК является высотой и медианой ∆АОВ, попробуем доказать равенство двух прямоугольных треугольников АОК и КОВ.
1. ОК (общая сторона)
2.Угол ОКВ и АКО равны (т.к. ОК -
высота)
3. АК=КВ (т.к ОК - медиана)
Следовательно, треугольники равны по двум катетам.
Из этого делаем вывод, что угол АОК и КОВ также равны, а значит ОК является биссектрисой треугольника АОВ.
Т.к. ОК - биссектриса, высота и медиана, то треугольник АОВ - равнобедренный.
Теперь мы можем найти углы ОАВ и ОВА по теореме о сумме всех углов треугольника.
АОВ+ОАВ+ОВА=180°
Т.к. ∆АОВ равнобедренный, то ОАВ=ОВА=½(180°-АОВ)=½(180-60)=½120=120/2=60°.
Т.к. все углы в треугольнике АОВ равны по 60°, то этот треугольник равносторонний.
Значит, АО=ОВ=АВ=8см.
Ответ: 8см.
1. ОК (общая сторона)
2.Угол ОКВ и АКО равны (т.к. ОК -
высота)
3. АК=КВ (т.к ОК - медиана)
Следовательно, треугольники равны по двум катетам.
Из этого делаем вывод, что угол АОК и КОВ также равны, а значит ОК является биссектрисой треугольника АОВ.
Т.к. ОК - биссектриса, высота и медиана, то треугольник АОВ - равнобедренный.
Теперь мы можем найти углы ОАВ и ОВА по теореме о сумме всех углов треугольника.
АОВ+ОАВ+ОВА=180°
Т.к. ∆АОВ равнобедренный, то ОАВ=ОВА=½(180°-АОВ)=½(180-60)=½120=120/2=60°.
Т.к. все углы в треугольнике АОВ равны по 60°, то этот треугольник равносторонний.
Значит, АО=ОВ=АВ=8см.
Ответ: 8см.
Новые вопросы по Геометрии
5 - 9 классы
56 секунд назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
3 минуты назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад