Анонимно

В треугольнике АВС сторона АВ разделена на три равные части и через точки деления проведены прямые, параллельные стороне АС. Больший из двух отрезков, который расположен между сторонами треугольника, равен 8 см. Найдите сторону АС треугольника.
Срочно.

Ответ

Анонимно
Пусть дан ΔАВС
АК = КМ = МВ
МО || KH || AC
КН = 8 см
Найти: АС

Из условия:
АК = КМ = МВ и МО || KH || AC, тогда, по теореме Фалеса:
СН = НО = ОВ
Следовательно, ΔАВС ~ ΔКВН

Пусть АК = КМ = МВ = х, тогда:
АВ = 3х
КВ = 2х
В подобных треугольниках соответствующие стороны пропорциональны, отсюда:

[tex] \cfrac{KB}{AB}= \cfrac{KH}{AC} \\\\ \cfrac{2x}{3x}= \cfrac{8}{AC} \\\\ AC= \cfrac{3x*8}{2x}=12[/tex]

Ответ: 12 см.