Анонимно
К плоскости ромба со стороной С и тупым углом В(равным 2a), восстановлен перпендикуляр ВР=р. Найти расстояние от Р до диагонали АС
Ответ
Анонимно
ABCD_ромб ,AB=BC=CD=DA =c ; ∠ABC =2α >90° ;BP⊥(ABCD) ;PB =p.
----------------------------------------
d(P,AC) -?
Пусть O точка пересечения диагоналей ромба AC и BD (O=[AC] ⋂ [BD] ). Соединяем точка O с точкой P. BO проекция наклонной PO на плоскости ромба.
По теореме трех перпендикуляров заключаем , что PO ⊥AC (AC⊥ BO⇒AC⊥ BO). Значит PO и есть расстояние от точки P до диагонали AC, т.е. PO =d(P,AC).
Из прямоугольного треугольника (диагонали ромба перпендикулярны) AOB:
BO =AB*cos(∠ABO) =c*cosα (∠ABO=(∠ABC)/2 =2α/2=α , диагонали ромба являются биссектрисами углов) .
Из прямоугольного треугольника PBO (BP⊥(ABCD)⇒BP⊥ BO) по теореме Пифагора:
PO =√(PB² +BO²) =√(p² +(c*cosα)²) .
ответ: √(p² +(c*cosα)²) .
----------------------------------------
d(P,AC) -?
Пусть O точка пересечения диагоналей ромба AC и BD (O=[AC] ⋂ [BD] ). Соединяем точка O с точкой P. BO проекция наклонной PO на плоскости ромба.
По теореме трех перпендикуляров заключаем , что PO ⊥AC (AC⊥ BO⇒AC⊥ BO). Значит PO и есть расстояние от точки P до диагонали AC, т.е. PO =d(P,AC).
Из прямоугольного треугольника (диагонали ромба перпендикулярны) AOB:
BO =AB*cos(∠ABO) =c*cosα (∠ABO=(∠ABC)/2 =2α/2=α , диагонали ромба являются биссектрисами углов) .
Из прямоугольного треугольника PBO (BP⊥(ABCD)⇒BP⊥ BO) по теореме Пифагора:
PO =√(PB² +BO²) =√(p² +(c*cosα)²) .
ответ: √(p² +(c*cosα)²) .
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
10 - 11 классы
4 минуты назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад