Анонимно
В равнобедренном треугольнике ABC с углом при вершине В, рав-
ным 36°, провели биссектрису AD. Докажите, что треугольники ADB
и CAD — равнобедренные.
ПОМОГИТЕ С ПРАВИЛАМИ ОФОРМЛЕНИЯ... ПОЖАЛУЙСТА
Ответ
Анонимно
Ответ:
Найдем все углы треугольника ABC.
угол B=36; A=C=(180-36)/2=72
AD биссектриса, то углы DAC и DAB - равны и равны они 72/2=36 градусам.
Теперь найдем все углы треугольника ABD.
угол B=36; A=36; D=180-36*2=108 градусам.
Как видно из этого у нас 2 угла равны, а раз два угла равны, значит треугольник ABD - равнобедренный.
Теперь найдем все углы треугольника DAC
угол C=72; A=36; D=180-36-72=72
Как видно из этого у нас 2 угла равны, а раз два угла равны, значит треугольник DAC - равнобедренный.
Объяснение:
Ответ
Анонимно
Ответ:
Чуть-чуть не вместилось
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
5 - 9 классы
5 минут назад
1 - 4 классы
6 минут назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад