Анонимно
в параллелограмме ABCD угол ABC равен 120 градусов. Биссектриса BP угла ABC пересекает сторону AD в точке P. Известно, что AB равно 8см.,PD равно 6см.. Вычислите длины диагоналей параллелограмма. только очень подробно пж.
Ответ
Анонимно
Угол ВАД=60 градусам (по свойству углов параллелограмма 180-120)
Значит треугольник АВР -равносторонний. Так как угол АВР=ВАР=60 градусам. АР=АВ, АД=АР+РД.
АД=6+8=14
Диагональ большая по теореме косинусов равна
корню из величины : 64+196+2*8*14*0,5=260+112=372=4*93 (косинус 120 градусов равен -0,5)
Значит Большая диагональ равна 2*sqrt(93)
Меньшая диагональ равна корню из 260-112=148=37*4 (косинус 60 градусов равен 0,5)
Значит меньшая диагональ равна 2*sqrt(37)
sqrt - квадратный корень
Значит треугольник АВР -равносторонний. Так как угол АВР=ВАР=60 градусам. АР=АВ, АД=АР+РД.
АД=6+8=14
Диагональ большая по теореме косинусов равна
корню из величины : 64+196+2*8*14*0,5=260+112=372=4*93 (косинус 120 градусов равен -0,5)
Значит Большая диагональ равна 2*sqrt(93)
Меньшая диагональ равна корню из 260-112=148=37*4 (косинус 60 градусов равен 0,5)
Значит меньшая диагональ равна 2*sqrt(37)
sqrt - квадратный корень
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
10 - 11 классы
4 минуты назад
5 - 9 классы
4 минуты назад
5 - 9 классы
6 минут назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад