Анонимно
прямая, параллельная основаниям трапеции ABCD пересекает ее боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF,если AD =36. BC=18. CF:DF=7:2 (ПОМОГИТЕ ПОЖАЛУЙСТА)
Ответ
Анонимно
Продолжим боковые стороны трапеции до пересечения в точке G. Тогда имеем треугольник АGD, в котором ВС = (1/2)*AD (ВС=18, AD=36 это дано). Нам также дано, что сторона трапеции CD = 7*Х+2*Х =9*Х. Значит и отрезок GС = 9*Х (так как ВС - средняя линия). Треугольники EGF и BGC подобны, так как EF параллельна ВС. Из подобия имеем: ВС/EF = GC/GF или 18/EF = 9*X/16*X, откуда EF=32.
Новые вопросы по Геометрии
5 - 9 классы
2 минуты назад
5 - 9 классы
2 минуты назад
5 - 9 классы
2 минуты назад
5 - 9 классы
3 минуты назад
5 - 9 классы
4 минуты назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад