Анонимно
Отрезки АС и ВD пересекаются в точке О, причем АО = 15 см, ВО = 6 см, СО = 5 см, DO = 18 см. а) Докажите, что четырехугольник АВСD – трапеция. б) Найдите отношение площадей треугольников АОD и ВОС.
Ответ
Анонимно
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны. Значит треугольники ВОС и АОD подобны, так как ВО/OD=CO/OA=1/3, а <BOC=<AOD как вертикальные. Из подобия треугольников следует, что <DAO=<BCO как углы против соответственных сторон подобных треугольников. А эти углы - накрест лежащие при прямых ВС и AD и секущей АС. Значит ВС параллельна АD и четырехугольник АВСD - трапеция.
б) Площади подобных треугольников относятся как квадрат коэффициента подобия. Коэффициент подобия равен
ВО/ОD=6/18=1/3, значит Saod/Sboc=1/9.
б) Площади подобных треугольников относятся как квадрат коэффициента подобия. Коэффициент подобия равен
ВО/ОD=6/18=1/3, значит Saod/Sboc=1/9.
Новые вопросы по Геометрии
5 - 9 классы
3 минуты назад
5 - 9 классы
6 минут назад
5 - 9 классы
8 минут назад
10 - 11 классы
8 минут назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад