Анонимно
В треугольнике АВС угол В=60,ВМ-биссектриса треугольника. На стороне ВС взята точка К так, что угол ВАК = углу АМВ.Отрезки АК и ВМ пересекаются в точке О. Найдите площадь треугольника АМО, если ВО=1, ОМ=8.
Ответ
Анонимно
Очень много лишнего в условии. Зачем эти "биссектрисы"...
∠ABM = 30°;
Треугольники ABO и ABM подобны по двум углам. Поэтому
AO/AB = AM/BM; и AO/BO = AM/AB;
Из первого AO = AB*AM/9; из второго AO = AM/AB; (BO = 1);
Отсюда AB^2 = 9; AB = 3;
Площадь AOB = AB*BO*sin(30°)/2 = 3/4;
Площадь AOM в 8 раз больше, так как MO/BO = 8;
Ответ 6.
∠ABM = 30°;
Треугольники ABO и ABM подобны по двум углам. Поэтому
AO/AB = AM/BM; и AO/BO = AM/AB;
Из первого AO = AB*AM/9; из второго AO = AM/AB; (BO = 1);
Отсюда AB^2 = 9; AB = 3;
Площадь AOB = AB*BO*sin(30°)/2 = 3/4;
Площадь AOM в 8 раз больше, так как MO/BO = 8;
Ответ 6.
Новые вопросы по Геометрии
10 - 11 классы
38 минут назад
10 - 11 классы
1 час назад
5 - 9 классы
1 час назад
5 - 9 классы
1 час назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад