Анонимно
AB - диаметр окружности. Через точки A и B проведено две касательные к окружности. Третья касательная пересекает первые две в точках C и D. Доказать, что квадрат радиуса этой окружности равен произведению отрезков CA и DB. Заранее большое спасибо.
Ответ
Анонимно
O - центр окружности
E - точка касания прямой CD и окружности
Отрезки касательных к окружности, проведенных из одной точки, равны.
CA=CE; DB=DE
△AOC=△COE; △EOD=△DOB (по трем сторонам)
∠AOC=∠COE; ∠EOD=∠DOB
∠AOC+∠COE+∠EOD+∠DOB =180° <=> 2∠COE +2∠EOD =180° <=> ∠COE+∠EOD =90° <=> ∠COD =90°
∠OEC =90° (касательная перпендикулярна радиусу, проведенному в точку касания)
OE - высота в прямоугольном треугольнике COD
Квадрат высоты, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу.
OE^2= CE*DE <=> OE^2= CA*DB
E - точка касания прямой CD и окружности
Отрезки касательных к окружности, проведенных из одной точки, равны.
CA=CE; DB=DE
△AOC=△COE; △EOD=△DOB (по трем сторонам)
∠AOC=∠COE; ∠EOD=∠DOB
∠AOC+∠COE+∠EOD+∠DOB =180° <=> 2∠COE +2∠EOD =180° <=> ∠COE+∠EOD =90° <=> ∠COD =90°
∠OEC =90° (касательная перпендикулярна радиусу, проведенному в точку касания)
OE - высота в прямоугольном треугольнике COD
Квадрат высоты, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу.
OE^2= CE*DE <=> OE^2= CA*DB
Новые вопросы по Геометрии
5 - 9 классы
1 минута назад
5 - 9 классы
2 минуты назад
5 - 9 классы
8 минут назад
5 - 9 классы
14 минут назад
5 - 9 классы
15 минут назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад