Анонимно
вычислить площадь фигуры, ограниченной линиями: y=x^2 y=2x+8
Ответ
Анонимно
Надо взять определённый интеграл от функции f(x) = 2x + 8 -x².
Чтобы проставить пределы интегрирования, надо найти абсциссы точек пересечения заданных функций
х² = 2х + 8
х² - 2х - 8 = 0
D = 4 + 32 = 36
х1 = 0,5(2 - 6) = -2
х2 = 0,5(2 + 6) = 4
Итак, пределы интегрирования -2 и 4
Int I₋₂⁴ (2x + 8 - x²)dx = (2·0.5x² + 8x - x³/3)₋₂⁴ = (x² + 8x - x³/3)₋₂⁴ =
= (16 + 32 - 64/3) - (4 - 16 + 8/3) = 48 - 64/3 + 12 - 8/3 = 60 - 72/3 = 60 - 24 = 36
Ответ: 36
Чтобы проставить пределы интегрирования, надо найти абсциссы точек пересечения заданных функций
х² = 2х + 8
х² - 2х - 8 = 0
D = 4 + 32 = 36
х1 = 0,5(2 - 6) = -2
х2 = 0,5(2 + 6) = 4
Итак, пределы интегрирования -2 и 4
Int I₋₂⁴ (2x + 8 - x²)dx = (2·0.5x² + 8x - x³/3)₋₂⁴ = (x² + 8x - x³/3)₋₂⁴ =
= (16 + 32 - 64/3) - (4 - 16 + 8/3) = 48 - 64/3 + 12 - 8/3 = 60 - 72/3 = 60 - 24 = 36
Ответ: 36
Новые вопросы по Математике
10 - 11 классы
35 секунд назад
10 - 11 классы
39 секунд назад
В классе девочек в 3 раза больше чем мальчиков.Может ли быть в этом классе 34 ученика?А 36 учеников?
5 - 9 классы
43 секунды назад
1 - 4 классы
1 минута назад