Анонимно
Две окружности с радиусами 2 см и 1 см касаются прямой a в точках A и B и расположены в одной полуплоскости относительно прямой a. Найдите расстояние между центрами окружностей, если AB равен 8 см
Ответ
Анонимно
Если обозначить за О1 и О2 центры этих окружностей, то АВО1О2 - прямоугольная трапеция (радиусы О1А и О2В проведены в точку касания, значит, перпендикулярны касательной), в которой одна боковая сторона АВ, прилежащая к прямым углам, равна 8 см (по условию задачи), О1А = 2 см, О1В = 1 см.
Тогда искомое расстояние О1О2 между центрами окружностей равно гипотенузе прямоугольного треугольника с катетами 8 см и 1 см, величина которого находится по теореме Пифагора: √8² + 1² = √65.
Ответ: √65
Тогда искомое расстояние О1О2 между центрами окружностей равно гипотенузе прямоугольного треугольника с катетами 8 см и 1 см, величина которого находится по теореме Пифагора: √8² + 1² = √65.
Ответ: √65
Новые вопросы по Математике
1 - 4 классы
40 секунд назад
1 - 4 классы
52 секунды назад
1 - 4 классы
53 секунды назад
5 - 9 классы
1 минута назад